
SESC: SuperESCalar Simulator

Pablo Montesinos Ortego
Paul Sack

December 20, 2004

1 What is this all about?

The biggest challenge for new students in architecture research groups is not
passing theory or software classes. It is not finding a new apartment or register-
ing with the INS. It is understanding the architecture of the processor simulator
that will soon confront them–a simulator coded not for perfection, but for dead-
lines. Even the most well-conceived simulator can quickly look like a Big Ball
of Mud to the unitiated.

1.1 Typical initation procedure

• Find a desk

• Configure computer, email userhelp, etc.

• Advisors says something like “Why don’t you start working on this?”

• Bother older student for simulator access

• Download source code

• Find documentation

• After finding that the documentation is less than useless (if it even exists),
bother senior students with pesky questions

• Senior students graduate

• You are the most senior student

• Give up, read the code

• Add more mud

• ...

• Graduate

1



1.2 Purpose of this document

This document is intended to break the chain of simulator initiation. This
document explains, at a high level, the workings of the core of the simulator,
the part that new students must learn first. SESC is under constant development
and changes overnight, but this document describes the more permanent, stable
core of the simulator.

This document cannot explain all of SESC. It is a great starting point, from
which the SESC novice can dive into the source code.

This is the documentation we wish we had.

2 Introduction

2.1 What is a microprocessor simulator?

In microarchitecture research, typically researchers have some kind of proposal
for a microprocessor that will be better than the current state of the art. It might
be faster, use less power, be more reliable, or create the perfect loaf of bread.
In any event, since it is expensive to design and fabricate a microprocessor,
researchers write microprocessor simulators. There are different approaches to
this. Some are trace-driven, i.e., they use instruction traces of applications.
Most are execution-driven, i.e., they actually execute the simulated application.

Many simulators also divide simulation into an emulator, which actually
executes the simulated application, and a timing simulator, which models the
timing and energy of the simulated application.

It is also common to have at least part of the simulator be event-driven.
What this means is that parts of the simulator can schedule an event, i.e., a
function call with parameters, to occur at some time in the future.

2.2 What is SESC?

SESC is a microprocessor architectural simulator developed primarily by the
i-acoma research group at UIUC and various groups at other universities that
models different processor architectures, such as single processors, chip multi-
processors and processors-in-memory. It models a full out-of-order pipeline with
branch prediction, caches, buses, and every other component of a modern pro-
cessor necessary for accurate simulation.

SESC is an event-driven simulator. It has an emulator built from MINT, an
old project that emulates a MIPS processor. Many functions in the core of the
simulator are called every processor cycle. But many others are called only as
needed, using events.

2.3 The Architecture Business Cycle of SESC

This section describes SESC’s Architectural Business Cycle as shown below:

2



Figure 1: The Architectural Business Cycles of SESC.

2.4 Stakeholders

SESC’s stakeholders are PhD students and researchers in computer architecture.
Its configurability and the availability of the source code make it an excellent
tool for evaluating research proposals. It has several advantages over other
simulators, such as Simplescalar. For one, SESC models a variety of architec-
tures, including dynamic superscalar processors, CMPs, processor-in-memory,
and speculative multithreading architectures. Simplescalar focuses on single
processors only. In addition, SESC is very fast, capable of executing over 1.5
millions instructions per second (MIPS) on an Intel Pentium 4 3 GHz processor.

Apart from our group, it is used and developed by other research groups
at the University of Illinois, University of California at Santa Cruz, University
of Rochester, North Carolina State University, Georgia Institute of Technology,
and Cornell University.

2.5 Developing Organization

SESC’s primary developers are Jose Renau at the University of California at
Santa Cruz and some of the students in the i-acoma group at the UIUC. Be-
cause the software is under an open-source license, anyone can participate in
its development. In fact, users are encouraged to submit their changes so that
SESC improves. Changes to the core of the simulator, that are useful for all

3



the users are usually commited once the code has been verified to work. Other
changes that specifically support research ideas are usually not commited until
the research has been published. This is done so that each research group does
not have to disclose its projects.

Not all submitted code will be accepted, though. In order to be accepted,
any upgrade is reviewed by Jose Renau, and will be rejected it if it does not
achieve minimum quality and code-style standards.

2.6 Technical Environment

SESC is written in C++, since it is faster than Java and has good object-
oriented programming support. SESC runs on many UNIX sytems as Linux
and Darwin/MacOS X. SESC runs on big-endian and little-endian processors.

2.7 Architect’s Experience

C++ was chosen not only for performance reasons, but also because the primary
architect was very familiar with it. All the main contributors have a strong
background in using or writing architecture simulators.

2.8 Requirements and Qualities

Modern microprocessor simulators are highly complex software systems. They
have rigorous timing requirements and must maintain a high fidelity of simula-
tion accuracy. Fidelity should be the key requirement of any simulator. After
all, there is no point on having a simulator that does not reflect the micropro-
cessor behavior accurately.

Second to accuracy is performance. Since a simulator executes instructions
on the order of one million times slower than a real processor, execution speed
is important. A faster simulator will be able to execute benchmarks faster. A
single research paper will often require thousands of hours of simulation time,
and reducing this is important, as reserach group’s have limited computing
budgets.

Figure 2 above shows the architect’s influences on SESC. Its end-users are
PhD students that are trying to test new ideas without building the actual
hardware. The figure shows how an architecture research group works. At some
point in the semester, an important conference hsa a call for papers. Then,
different students propose ideas for paper submissions. Once they are approved
by the group advisor, each student or group of student will create his own version
of the simulator. During the next several months, he will modify and extend
the simulator in order to support the paper. Once the paper is submitted, there
is a period of time when the students integrate their branches to create a new
version of the simulator. Integration is not an easy task. In many cases, two
students work on similar ideas and modify the same modules.

Therefore, Figure 2 suggests two requirements that SESC should achieve.
First, it has to be modifiable. If every student on the group is going to test his

4



Figure 2: The ABC of the i-acoma group.

5



ideas using SESC, its code has to be highly modifiable. High modifiability might
not be an important requirement in pre-production environments: changes is
real products are incremental, as are the changes in the simulator. Second, the
code has to be easy to test. Integration phases can take weeks if there is too
much overlap amongst the different branches. In fact, it is likely that not all
the changes in a branch will ever become part of the main source code tree.

Many of the available microprocessor simulators offer tons of features but
have a drawback: they are very slow. Speed is always important, but especially
during the two weeks before the conference’s deadline. SESC was designed with
performance in mind: it is up to ten times faster than competing simulators.

2.9 What is a superscalar out-of-order pipeline?

We can envision a simple processor as a black box that executes one instruction
every cycle. Early microprocessors followed this approach. However, researchers
understood that no instruction used all the elements inside the processor all the
time, and that it could be possible for a processor to simultaneously operate
on more than one instruction at a time: this is the concept behind a pipeline.
Pipelining is a microprocessor technique that allows multiple instructions to
be overlapped while they are being executed inside the processor. Pipelining
a processor is not an easy task. There are many challenges that pipelining
introduces, e.g., exception handling and branch misprediction. However, all
major processors these days are heavily pipelined. The latest Intel Pentiums
have over 30 pipeline stages.

It is possible to build a microprocessor in which each stage of the pipeline
requires one cycle. In that situation, a microprocessor can be seen as a FIFO
queue: the first instruction fetched is the first instruction committed. Still,
common sense reasons that performing a floating point multiplication will take
more time than comparing an integer with zero. However, supporting multi-
cycle operations results in a pipeline that is no longer a FIFO, as an instruction
fetched at time t can finish before than an instruction fetched at time t-1.
Again, out-of-oder processors have to deal with many problems when handling
exceptions.

Under perfect conditions, an out-of-order pipelined microprocessor would
retire one instruction per cycle. To improve performance further we could allow
multiple instructions to be retired in a clock cycle. This can be done in two
ways:

• Very long instruction word architectures (VLIW): the processor issues a
fixed number of instructions per cycle. The compiler schedules them.

• Superscalar processors: the processor tries to issue more than one instruc-
tion per cycle so as to keep all of the functional units busy. There may be
limitations on parallel issue, like no more than one memory instruction per
clock cycle. In order to maximize the number of instructions issued per
clock, both static and dynamic scheduling techniques are used. Statically

6



scheduled processors use in-order execution, while dynamically scheduled
processors use out-of-order execution.

2.10 How does SESC model this?

In SESC, the actual instructions are executed in an emulation module, which
emulates the MIPS Instruction Set Architecture (ISA). It emulates the instruc-
tions in the application binary in order. The emulation module is built from
MINT, a MIPS emulator.

The emulator returns instruction objects to SESC which are then used for the
timing simulator. These instruction objects contain all the relevant information
necessary for accurate timing. This includes the address of the instruction, the
addresses of any loads or stores to memory, the source and destination registers,
and the functional units used by the instruction. The bulk of the simulator uses
this information to calculate how much time it takes for the instruction to
execute through the pipeline.

The justification for this is twofold. First, it is much faster to have the actual
instruction executed in a simple emulator. Second, it is easier to program and
debug when execution and timing are separated. The timing simulator, which
is very complex, does not need to be 100% accurate if it does not affect the
computation of instructions. If a bug causes the simulator to have a 0.1%
error in timing accuracy, this is perfectly acceptable. In some instances, the
programmers of SESC could deliberately ignore extremely rare race conditions
which would be difficult to program correctly and would have minimal impact
on timing.

3 Detailed view

In this section, we describe how an instruction in an application binary flows
through the simulator.

3.1 Instruction types

There are two instruction types in SESC. The first represents actual instructions
in the application binary. The second represents short-lived instructions as they
flow through the pipeline.

3.1.1 Static Instructions

These are also referred to as static instructions. An example would be add
r1,r2,3. This is implemented in the Instruction class. Instructions are created
during SESC initialization. A function reads the application binary and decodes
each instruction into an internal representation. The internal representation
contains information to make executing the instruction fast.

The instruction object contains the source registers, the instruction type
(branch, load, store, integer arithmetic, or floating point arithmetic), a pointer

7



to a function to execute the specific instruction (such as floating-point addition),
a pointer to the next instruction to execute, and a pointer to a branch target if
one exists.

It is crucial that emulation is fast, as often benchmarks will have a lengthy
initialization period that can be run without a timing model.

3.1.2 Dynamic Instructions

Dynamic instructions are specific instances of a static instruction. Each time
a static instruction is executed, a dynamic instruction is created. For example,
a dynamic instruction might refer to the above-mentioned add instruction when
r1 contains the value 10 and r2 contains the value -8 and the processor is on
clock cycle 32948.

Dynamic instructions are implemented in the DInst class. DInst objects
have many fields.

Consider the following sequence of instructions:

1: ld r3
2: ld r4
3: add r3,r4,r5

Instruction 3 is said to be dependent upon instructions 1 and 2, since it gets
its input operands from those instructions. The DInst class keeps track of this
by linking the DInst for instruction 3 to DInsts 1 and 2 and linking DInsts 1
and 2 to Dinst 3. These relationships are referred to as dependencies.

There are many other variables which keep track of whether a DInst has
been issued, executed, or retired; which CPU the DInst belongs to; the sequence
number of the DInst; which resources a DInst needs for execution (such as a
floating-point multiplier); and whether a DInst is executing in the wrong path
of a mispredicted branch.

This class is extended for many specific projects in ways which will not be
documented here.

3.2 Emulation

Emulation is controlled by the ExecutionFlow class. The upper-level interface to
ExecutionFlow is through the executePC() function. The executePC() function
executes the next instruction and returns the corresponding DInst.

The executePC() function actually calls a function, exeInst(). This function
performs some checks, such as that the address of the instruction is a legal
address, and then executes the instruction. Each Instruction object contains a
pointer to a function that emulates the instruction. The source and destination
operands of the instruction are also kept in the Instruction object. Thus, the
actual execution is quite quick.

Within the ExecutionFlow class, there is also a function that executes in-
structions in rabbit mode and does not model their timing.

8



Figure 3: The class interactions that model the pipeline.

Justification

It is very important that emulation without modeling timing be very fast. In
many benchmarks there are lengthy initialization sections, which may be longer
than the main portion of the program.

In “rabbit mode,” in which Instructions are only emulated and no timing
simulation is performed, the simulator executes instructions about 1000 times
faster than in full simulation mode.

3.3 Pipeline view

In SESC, the GProcessor (generic processor) object type coordinates interac-
tions between the different pipeline stages. The upper-level interface to the
GProcessor object is the advanceClock() function. The advanceClock() func-
tion advances each stage in the pipeline one clock cycle. It does this by first
calling a function to fetch instructions into the instruction queue. It then calls
a function to issue instructions from the queue into a scheduling window. There
are two clusters that schedule and execute instructions, one for integer and
one for floating-point instructions, and each has its own scheduling window.
Instruction scheduling and execution is handled in other parts of the simula-
tor. Finally, a function is called to retire already-executed instructions from the
reorder buffer.

All of the class interactions that model the pipeline are shown in Figure 3.

9



3.3.1 Fetch/Decode

Instruction fetch is the first stage of the pipeline. In this stage, instructions are
brought into the pipeline from the instruction cache. In a typical configuration,
the fetch unit will fetch up to 4 instructions per cycle. The fetch unit will
also predict which direction a branch will go, and fetch instructions down the
predicted path of the branch.

The class that handles instruction fetch is the FetchEngine class. The upper-
level interface to this is the fetch() function. The fetch function tries to fetch
a configurable number of instructions from the instruction cache. The fetch
function also models a branch predictor. The fetch function interacts with the
ExecutionFlow class. Specifically, it calls the ExecutePC() function to get the
address of the next instruction to fetch from the cache. It then makes a request
for this address to the instruction cache. When all of the instructions return
from the instruction cache, the fetch bundle is passed to the next stage of the
pipeline.

Decoding, i.e., transforming instructions from the ISA format into an inter-
nal format, is done when the simulated program is read and each instruction in
the binary is decoded into an Instruction object. Thus, this class simply adds
a decode delay penalty to the time that the bundle is passed to the next stage
of the pipeline.

Branch Prediction
SESC supports several different branch predictors. The choice of predictor

and its size is selected at run-time. Since branch prediction is done in the fetch
unit, the FetchEngine class handles this as well.

If the instruction is a branch, it calls the processBranch() function, which
does the branch prediction. If the branch prediction is incorrect, the process-
Branch() function models the pipeline flush by marking the mispredicted branch.

Successive calls to fetch will call the fakeFetch() function, which fetches
instructions from the wrong path of the mispredicted branch. These instructions
will be marked as fake instructions.

Finally, when the mispredicted branch executes, it updates the FetchEngine
object and restores the correct path of execution.

3.3.2 Issuing & Scheduling

During the issue stage, instructions are taken from the instruction queue that
instructions were fetched into, and sent to individual scheduling windows in a
particular cluster. Scheduling refers to when the input operands for an instruc-
tion are ready and the instruction is scheduled for execution. Until scheduling,
every instruction goes through the processor in-order, i.e., in program order. In
scheduling and execution, instructions execute out-of-order as they are ready
to execute. Later, in the retirement stage, instructions are put back in program
order.

The issue() function in the GProcessor object takes a configurable number of
instructions from the instruction queue and tries to put them in the scheduling

10



queue for each cluster. The issue() function calls addInst() for each instruction.
If addInst() fails for an instruction, issue() returns, and issue() will try again in
the next cycle to issue that instruction.

The addInst() function checks several things before it confirms that the
instruction can be issued. First, it checks that there is space in the reorder
buffer. Second, it checks that there is a free destination register. Third, it
checks that there is space in the scheduling window for the cluster. Finally,
based on the specific resource that an instruction uses, it performs other checks.
For example, for loads, it will check that the maximum number of loads has
not been reached. For branches, it will check that the maximum number of
outstanding branches has not been reached. This check is done by calling the
schedule() function of the specific Resource object for that kind of instruction.
(Examples of Resources are load/store units or floating-point multipliers).

If the above-described addInst() function in the GProcessor class succeeds,
it calls the addInst() function for the specific Cluster which will later execute
the instruction. Finally, an entry is added at the tail-end of the reorder buffer
for this instruction.

To manage dependencies between instructions, i.e., when the destination
register of one instruction is the source register of another, each Cluster has
a DepWindow (dependency window) object which manages the dependencies
between instructions. The addInst() function in the Cluster then calls the
addInst() function in the DepWindow (dependency window) associated with
the Cluster.

In the DepWindow, a table is maintained mapping instructions to destina-
tion registers. The table only keeps track of the last instruction to write to
each register. When addInst() is called, the source registers of the instruction
being scheduled are looked up in the table. This finds the instructions, if any,
which produce the input operands for that instruction. When an instruction
has finished execution, if the entry in the table still maps to that instruction, it
is cleared.

Consider the following code fragment:

x: ld R1, 0x1000 ; load memory address 0x1000
y: add R1, R1, R2

In the example, instruction y is said to be dependent upon instruction x.
Instruction y is also the consumer of instruction x, and instruction x is the
producer for instruction y. In this example, the addSrc() function is called
on instruction x with the parameter of instruction y. Later, in the Execution
subsection, we will elaborate how instruction x can wake-up instruction y after
instruction x has executed and schedule instruction y for execution. Also, DInst
y marks that it depends upon one instruction.

In the case that there are no dependencies for an instruction, the instruction
is scheduled for execution. This is done by generating a callback event to execute
the simTime() function of the Resource in a certain number of cycles. The delay
depends upon the fixed scheduling penalty and the number of instructions that

11



Figure 4: The Resource class hierarchy.

are ready for execution in a specific Resource, as each Resource can only execute
a small fixed number of instructions per cycle.

Finally, the output operand in the table is set to point to the instruction
being scheduled. Then, future instructions that consume that output operand
will become dependent upon this instruction.

3.3.3 Execution

The DepWindow object either schedules an instruction for execution, or sets
pointers in the instructions which must execute first.

There are subclasses to Resource for each type of instruction, as shown in
Figure 4. Loads are processed by the FULoad subtype, stores by FUStore,
other miscellaneous memory accesses by FUMemory, branches by FUBranch,
and all others by FUGeneric. Each subclass defines a simTime() function which
simulates the execution of the function. Each also defines an executed() func-
tion, which is called after execution has completed. Execution takes one cycle
for branches and integer operations, several cycles for floating-point operations,
and up to hundreds of cycles for memory operations.

Execution is done by the simTime() function in the Resource object. For
loads, the load Resource object subtype, FULoad, will send the load to the
cache. For stores, it schedules a callback to the executed() function. (Stores
are actually sent to the cache in the retirement stage, since at this stage, the
stores could be down the wrong path of a branch.) For all other instructions, a
callback is scheduled to the executed() function.

12



The executed() function calls the entryExecuted() function for the corre-
sponding Cluster for that Resource(). The entryExecuted() function calls the
simTimeAck() function in the DepWindow object. The simTimeAck() function
first marks the DInst as executed, so it can be retired later. Then, it checks if
the entry for the destination register in the table still points to this DInst. If so,
it clears that entry in the table; future instructions which consume that value
do not need to wait. Finally, the instruction checks if there are any instruc-
tions dependent upon it. Consider again the example above. In this case, DInst
x checks that DInst y is not dependent upon any other instructions. Then,
y is scheduled for execution by generating a callback event to the simTime()
function.

3.3.4 Retirement

In the retire stage in an out-of-order processor pipeline, instructions which have
executed are removed from the head of the reorder buffer in the original program
order. Typically, up to 3 or 4 instructions can be retired per cycle. Most
instructions can always be retired once they have executed and have reached
the head of the reorder buffer. Stores, however, are not actually sent to the
cache until the retirement stage. If the cache cannot accept the store right
then, the store cannot be retired.

In SESC, the GProcessor object calls the retire() function each cycle. The
retire function takes the DInst at the head of the reorder buffer, which is the
oldest instruction, and checks if it can be retired. First, it checks if the instruc-
tion has been executed by checking the executed flag set in the execution stage.
Then, it calls the retire() function for the Resource object that handled that
instruction.

The retire() function for the Resource object returns a success code indicat-
ing whether or not the instruction can be retired. For all instructions but stores,
the instruction can always be retired. For stores, the retire() function checks if
the cache can accept the store and then returns the corresponding code. The
cache might not be able to accept the store if there are too many outstanding
stores or if there is a memory fence. If the cache can accept the store, a memory
request is sent to the cache for that store and the instruction can be retired.

The retire() function in the Resource object also is responsible for destroying
the DInst object.

In the GProcessor object, the retire() function is a good place to check when
the processor has stalled for too many instructions. (I.e., when the processor is
no longer retiring instructions.) If a processor stalls too long, it likely indicates
the presence of a bug.

3.4 Caches

In a typical modern micro-processor, there is an upper-level cache for instruc-
tions, an I-cache, and an upper-level cache for data, a D-Cache. These are also

13



referred to as L1 caches. Below this is a larger, slower L2 cache. In many con-
figurations, there is also an off-die L3 cache that is even larger and slower than
the L2 cache. Caches have many parameters. SESC models different cache:

• Sizes

• Hit & Miss latencies

• Replacement policies

• Cache-line sizes

• Associativities

The Cache implementation in SESC is necessarily quite complex and uses
many event-driven callbacks. This is necessary to model all the latencies and
transactions involved in caches. (For example, a read miss in the L1 may cause
a dirty cache line in the L1 to be written back to the L2, and only after this
is done can the L1 miss be sent to the L2. Then if the read misses in the L2
cache, the L2 has to arbitrate for access to the bus, then send it to memory,
and so on. Each of these steps incurs a fixed delay plus the cost of arbitrating
with other requests for fixed resources.) In this section, we will describe only
the most important parts of the Cache implementation, as the details would
otherwise be overwhelming.

Each GProcessor has a MemorySystem object. The MemorySystem object
creates the hierarchy of caches and serves as an adapter between the GProcessor
and the highest-level Caches.

When the GProcessor needs to interact with the MemorySystem, it cre-
ates a MemoryRequest object. There are DMemoryRequest objects for data
and IMemoryRequests for instructions. Further, DMemoryRequests have a
field to indicate if an access is a read or a write. MemoryRequests are cre-
ated through the singleton DMemRequest::create() or IMemRequest::create()
functions. These functions take as parameters the DInst object the request is
associated with, the MemorySystem object this request is going through, and
the type of operation (read or write).

The create() function allocates a new MemRequest object, initializes it, and
then calls the access() function on the highest-level Cache object.

In the Cache object, the access() function is quite simple. It sends read
requests to the read() function and writes to the write() function. Each of those
functions uses a callback to call doRead() or doWrite() in the next available
Cache cycle, to model contention for the cache ports. If the read or write is
a hit in doRead() or doWrite() respectively, the goUp() function is called on
the MemoryRequest. This will return the MemoryRequest to the GProcessor.
Otherwise, a miss handler function is called which calls the goDown() function
on the MemoryRequest to send the MemoryRequest to the next level in the
hierarchy (e.g.,the bus or the L3 cache).

14



Figure 5: Interconnection network class organization.

The important thing is that all types of Caches and Buses inherit from a
common class, MemObj, which defines a common interface consisting of ac-
cess(), returnAccess(), and other less important functions. (ReturnAccess() is
called by goUp() when an access returns to a higher-level cache from a lower-
level cache.) This common interface allows fully-configurable cache hierarchies.
Each Cache subtype can have a different manner of handling requests internally,
as long as it conforms to this interface to upper and lower-level caches.

In a multiprocessor system, at the lowest level, each processor’s caches and
the main memory are connected. The manner in which they are connected is
described now.

3.5 Interconnection network

The interconnection network refers to the communication channel between pro-
cessors in a large multiprocessor system. Examples are a bus or a hyper-cube.

The job of an interconnection network in a parallel machine is to transfer
data from any source node to any desired destination node. The network is
composed of switches that route the packages from the source to the target.
Each network node contains a routing table, which stores network path and
status information and is used to select the most appropriate route to forward
the packages along.

Figure 5 shows a UML representation of the classes that compose the network
module. The InterConnection class represents the whole network layout. An
InterConnection object is defined by two components:

• A set of Router objects. The Router class represents a router in an in-

15



terconnection network. It decides where to send the packages it receives
according to the routing table and the ports traffic flow. Each Router
is defined by and ID and a set of parameters that model the dynamic
behavior of the switch:

– crossLat: router crossing latency

– localLat: local port latency

– localNum: number of addressable local ports

– localPort: number of ports for each addressable local port

A message is injected in the network via the launchMsg function. Mes-
sages are sent from router to router using the forwardMsg function. E.g.,
if a message has to go through five routers, forwardMsg is called five
times. Once a message arrives at its destination, receiveMsg is invoked.
Each router in the network has its own routing table, represented by the
RoutingTable class. The RoutingTable has the Wire objects that connect
routers to each other. The Wire class represents an unidirectional link
between two routers.

• A RoutingPolicy object. This abstract class is in charge of building the
routing tables for a given network configuration. It has four descendants:

– FullyConnectedRoutingPolicy: fully-connected network

– UniRingRoutingPolicy: unidirectional ring

– BiRingRoutingPolicy: bidirectional ring

– HypercubeRoutingPolicy: hypercube mesh

3.6 System Calls

SESC does not provide an operating system, so SESC must trap system calls
and perform them on behalf of the application. For every standard system call,
SESC transforms it into a MINT function. For example, the function call lstat
is redirected to the MINT function mint lstat. For a complete list of system
calls and their corresponding MINT function, please refer to the file subst.cpp.

The emulator, MINT, simulates most system calls. However, there are some
system calls that are not simulated. For example, fork() and sproc() need to
interact with the the operating system because it is not clear how the newly
created process will be scheduled. Since SESC does not provide an operat-
ing system, libapp is the application interface that takes care of those kind of
functions.

The other responsibility of libapp is to emulate Pthreads. The Pthreads
interface was specified by the IEEE POSIX 1003.1c standard (1995), and there is
vast documentation on it. When compiling applications for SESC, the developer
can choose between compiling an application to run under SESC or to run
natively on the host computer. The Thread API is the same in both cases, but

16



if the developer decides to use the OS-native thread system, this API is just a
wrapper for the host’s pthreads library. Finally, libapp is also responsible for
the locking API.

3.6.1 Thread API

• void sesc init(): Initializes the library and spawns the internal sched-
uler thread and transforms the single execution unit of the current process
into a thread. It must be the first function call of the thread API that is
called from an application.

• sesc spawn(void (*start routine) (void *),void *arg,long flags):
Creates a new thread of control that executes concurrently with the call-
ing thread. The new thread calls the function start routine passing arg
to it as the first argument. It returns an unique thread ID. For more
information about the flags, please check sescapi.h.

• void sesc wait(). Blocks until one of the child threads have finished.
If there are no child threads, it returns automatically. Unlike traditional
wait() calls, it does not return the pid of the thread that finished.

• void sesc self(). Returns the current thread ID.

• int sesc suspend(int pid). Suspends a thread whose pid is equal to
the argument. The thread is transitioned to suspended state and it is
removed from the instruction execution loop. The function returns true
on success and false on errors. If the calling thread is the only one in
running state, the simulation concludes.

• int sesc resume(int pid). Resumes a thread in suspended state by
moving it to a running queue. A resumed thread is usually assigned to
the same CPU that it was running on before it was suspended in order
to minimize the number of cache misses. However, the flags specified in
thread creation can change this policy. The function returns true on
success and false on errors.

• int sesc yied(int pid). Explicitly yields execution control to the thread
whose pid is passed as a parameter. If pid = -1, any thread can be dis-
patched. The function returns true when it succeeds or false when the
pid specifies an invalid or not yet ready thread.

• void sesc exit(). Terminates the current thread.

3.6.2 Synchronization API

The developer can choose between compiling an application to run under SESC
or to run natively on the host computer. The Synchronization API is the same
in both cases, but if the developer decides to use the native-OS locking system,
this API is just a wrapper for the host locking system.

17



• void sesc lock init(slock t *lock): Initializes the lock lock.

• void sesc lock(slock t *lock): Acquires the lock lock.

• void sesc unlock(slock t *lock): Releases the lock lock.

Other synchronization primitives supported by SESC are barriers and semaphores:

• void sesc barrier init(sbarrier t *barr): Initializes a barrier barr.

• void sesc barrier(sbarrier t *barr, long num proc): Executes a bar-
rier barr.

• void sesc sema init(ssema t *sema, int initValue): Initializes the
semaphore sema.

• void sesc psema(ssema t *sema): Signals the semaphore sema.

• void sesc vsema(ssema t *sema): Waits for the signal for the semaphore
sema.

3.7 Build strategy

For performance reasons, many configuration options are chosen at compile-time
rather than run-time. For the most part, quantifiable options, such as processor
speed or cache size, are specified at run-time in a configuration file. Qualitative
options, such as whether cache-coherence is enabled, are usually specified at
compile-time.

In addition, some options are mutually-exclusive and will not compile if
both options are enabled. For example, there are two different cache-coherence
implementations that cannot both be used at the same time.

Most architectural proposals have a large quantitative evaluation. In the
evaluation section of a paper, the numerical quantities, such as the processor
speed and pipeline configuration, are usually kept the same, whereas the qual-
itative properties are varied. Usually a user will compile a SESC binary with
their proposal enabled and a baseline SESC binary without their proposal and
compare the performance results.

To enable the user to easily compile multiple version of SESC using the same
source code tree, the build infrastructure stores all the object files and the final
binary in a separate build directory. Thus, the user can have several different
build directories with different versions of the simulator.

There is a configure script in the root directory which is used to choose which
features should be enabled.

It is very simple to build the simulator. For example, to model power:

mkdir build_power
cd build_power
../configure --enable-power
make

18



In this example, all intermediate compilation files and the final binary will
be stored in the build power directory, and other versions of the simulator can
built in other directories without interfering with each other.

4 Common patterns

In this section, some of the common objects and patterns that are used through-
out the simulator are presented.

4.1 CallBack

The core of the processor is modeled as in an execution-driven simulator. In
other words, functions are called to simulate some parts of the processor every
cycle. The rest works as an event-driven simulator. The CallBack class and its
subclasses let the programmer schedule the invocation of a function call at a
given time in the future. Before describing the parent class in more detail, it is
very helpful to see an example with code extracted from Cache.h and Cache.cpp.

Suppose one wants to call the doReadCB member function of the Cache class
using the Callback infrastructure. One should write the following code:

typedef CallbackMember1<Cache, MemRequest *, &Cache::doRead> doReadCB;

This defines doReadCB, that will call the doRead member function of the
Cache class. CallbackMember1 indicates that the function we are about to call
is a member function of a class and that it will receive only one parameter. The
arguments of the template indicate the class to which the function we are calling
belongs (Cache), the kind of argument the function is expecting (MemRequest
*) and the address of the function to call (&Cache::doRead).

There are three operations one can do with this callback function:

• Execute it right away.

• Execute it after a certain number of cycles from now. For example, one
can schedule a function to be called after 30 cycles from now.

• Execute it at an absolute moment in the future. For example, one can
schedule a function to be called during cycle 100,000,000.

In the example, the callback function is going to be executed at a certain
point in the future (in the object’s next scheduling slot, to be more precise):

doReadCB::scheduleAbs(nextSlot(), this, mreq);

As one would expect, there are many subclasses that derive from CallbackBase,
which in turn derives from EventScheduler. EventScheduler is an abstract
class that implements two of the three functions mentioned above and declares
the third as a virtual function:

19



Figure 6: The callback class hierarchy.

• virtual void call()=0:. Each concrete class will implement it.

• static void schedule(TimeDelta t delta, EventScheduler *cb): sched-
ules the function call to be executed after delta cycles.

• static void scheduleAbs(Time t tim, EventScheduler *cb): sched-
ules the function call to be executed at time tim.

Figure 6 shows a simplified UML diagram of these classes. CallbackBase
is an abstract class that provides some useful private functions, but the de-
veloper should never use it unless he is creating a new descendant. The con-
crete classes CallbackFunction0, CallbackFunction1, CallbackFunction2,
CallbackFunction3 and CallbackFunction4 are used to call functions (out-
side classes) with 0, 1, 2, 3 and 4 arguments, respectively. The concrete classes
CallbackMember0, CallbackMember1, CallbackMember2, CallbackMember3 and
CallbackMember4 are used to call class member functions with 0, 1, 2, 3 and 4
arguments, respectively.

4.2 GStats

Any simulator needs an infrastructure to report the many statistics that a user
might be interested in, and the GStats class and its descendants provide the
developer with them.

In addition to providing a common interface to its descendants, GStats is
responsible for maintaining a list with all the GStats-derived objects that have

20



Figure 7: The GStats class hierarchy.

been instantiated. Every GStats object subscribes itself to that global list of
statistics in its constructor.

Three classes derive from GStats:

• GStatsCntr: A simple counter.

• GStatsAvg: An average counter.

• GStatsMax: Stores the max value of all the given values.

All of them must implement the reportValue() function, which prints the
value it stores or calculates. reportValue() will be called from the GStats
static report() function, which traverses the global list of GStats objects.

Figure 7 shows a simplified UML diagram of the GStats hierarchy.

4.3 Pools

Some objects in SESC are allocated once and used until the simulation is fin-
ished, e.g., Processor, Resource, and Cache objects. Others have short lifetimes,

21



e.g., DInst and MemRequest objects. Using new or malloc() for frequently allo-
cated and deallocated objects results in heap fragmentation and makes debug-
ging memory leaks difficult. To enhance performance and testability, pools are
used. Pools are large blocks of memory which contain objects of one type. Each
dynamic object in SESC has its own pool from which objects are allocated and
deallocated.

Use example in C++:

class Square {
static Pool<Square> pool;
...

}

Square s = Square::pool->checkOut();
s.doStuff();
Square::pool->checkIn(s);

4.4 Debugging

To support debugging, SESC has a debugging compilation option, DEBUG.
When DEBUG is turned on, assertions are checked and logging messages are
output. It is important to have this as an option, since debug mode slows down
the simulation considerably. SESC has a small file which defines the debugging
functions.

The I(x) function treats x as an invariant expression which must evaluate to
true. There are other similar functions which take different numbers of argu-
ments.

To log a debug message, programmers use the MSG() function the same way
they would use printf(). It takes a parameterized string and a list of parameters.
By default, these messages are displayed to the user’s shell, but they can also be
redirected to a file. This is similar to the Diagnostic Logger pattern presented
in Neil Harrison’s paper on logging.

Use example:

I(x>y);
MSG("x=%d,y=%d",x,y);

References

Culler et al, Parallel Computer Architecture: a Hardware/Software Approach,
1998.

Harrison, Neil, “Patterns for logging diagnostic messages,” Design patterns
in communications software, pp. 173-185, 2001.

Hennessy and Patterson, Computer Architecture: A Quantitative Approach,
3rd ed., 2003.

22


